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Microwave Mode Locking at X Band
Using Solid-State

LANCE A. GLASSER AND HERMANN A.

Abstwzct—A theory of mode locking in the microwave regime is

presented. The use of solid-state microwave devices for this applica-
tion is described. A system that has been built using an IMPATT

diode as the gain element and a Schottky barrier diode in the role of a

saturable absorber is analyzed. Passive, combined passive, and
forced mode locking have been demonstrated experimentally. The

system had a round-trip time of 25 or 50 ns. Pulse lengths between 4
and 15 ns were observed. Self-starting and stability requirements are
investigated.

I. INTRODUCTION

A LTHOUGH it is, at present, of particular importance

to laser technology, mode locking was originally

proposed and accomplished in the microwave regime by C.

C. Cutler [1]. In 1955 he described a “regenerative pulse

generator” that operates essentially in the same way as the

system described here, as well as its cousins in the optical

regime, Cutler’s theory, however, predicted Gaussian pulses

that were not observed in the experiments reported here.

The mode locking described here, in fact, is more closely

related to the laser fast saturable absorber systems [2] now

used in the optical regime than to Cutler’s original version.

The system described here and most of the laser systems

contain reflection resonators, whereas Cutler’s system is a
ring resonator,

Mode locking is represented by a set of equations and any

system satisfying these equations will work. A microwave

mode locking system composed of solid-state devices can

take many forms. In general, there will be four elements. One

requirement is for a negative resistance element, such as an

IMPATT, Gunn, BARITT, or TRAPATT diode, which

acts in a fashion analogous to the laser in optical systems. A

second requirement is for a nonlinear element whose loss

goes down as the incident radiation increases, The rest of the

elements are a transmission line or filter to provide delay

and a cavity to provide bandwidth limiting,

The system that we shall analyze, and which has been

tested experimentally, is shown in Fig. 1. The active element

is an IMPATT diode in a cavity. A waveguide “delay line”

connects it to a Schottky diode in a feedback circuit, The

feedback circuit changes the bias current as a function of

the average RF power. The time constant of the feedback

circuit is such as to ensure self-starting of the mode-locked
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Fig. 1. Microwave mode-lockmg system.

pulses and to prevent relaxation oscillations. We begin with

a theoretical analysis of the function of the IMPATT diode

and of the Schottky diode in Sections II and 111.

In Section IV we combine the actions of these two diodes

via the waveguide delay line and obtain a slight generaliza-

tion of the laser mode-locking equation in that the Schottky

diode provides not only a resistive but also a reactive

saturation effect. The result is a secant hyperbolic pulse

envelope as a function of time and a chirp of the mode-

locked pulse. In Section V we study the self-starting condi-

tions, and in Section VI the prevention of relaxation

oscillations. Section VII presents the experimental results,

Saturable absorber mode locking at 10 GHz in a wave-

guide giving a 50-ns roundtrip time led to pulses varying in

length between 15 to 5 ns with either one or two pulses per

round-trip time. With a shortened system of 25 ns, round-

trip time single pulses of 4 ns width were observed. Maxi-

mum pulse power of 10 mW was measured, No attempt was

made to optimize the pulse power.

IL TEIE REFLECTION AMPLIFIER

The microwave amplifier circuit to the left of reference

plane I in Fig, 1 may be modeled as shown in Fig, 2, The

attenuator, placed between reference planes I and J, models

the Iow-Q or frequency-independent loss of the amplifier.

The series resonant circuit to the right of reference plane J

models the frequency dependence and gain portions of the

amplifier. This phenomenological model has the advantage

that the attenuation Q, of the resonant circuit, the value of

negative resistance 1?, may all be read off of an experi-

mentally represented Smith chart plot of the amplifier.
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The amplifier is assumed to operate in its linear region, a

good approximation for this system which uses a medium

power IMPATT diode. If we were to optimize for power, we

would have to include in the analysis the effects of amplifier

nonlinearities.

The output of a mode-locked system gives pulses of

high-frequency energy. The analysis will deal, therefore, with

voltage and current envelopes rather than with their instan-

taneous values.

If the normalized impedance of the IMPATT diode is Z,

then the reflection coefficient is given by

z–1
r=———

Z+l”
(1)

In the time domain, r(co) transforms into a differential

operator. Suppose the voltage of the incident wave is given

by sl(~)ejo”’, where Sl(t) is a function with a bandwidth that

is narrow compared with the carrier frequency OO. Then, in

the time domain, the action of the reflection coefficient on

SI (t), so as to produce a reflected wave Sz(t), maybe taken as

the Fourier transform of a Taylor expansion of r(co) around

co. to second order in co — co.:

S2(t)= rsl(t) (2)

where

r’= 22(z + 1)-’ (4)

4(Z’)’
r“ = ~z2f’~)2 -(z+ 1)’” (5)

Introducing the parameters of the system to the right of

reference plane J in Fig. 2, we may write

R–1
r(~o) = rIo = ~

– 4QR
–j17(co)

~=0,0= COO(R+ 1)2

– 8Q=R=
–~r’’(~)

,.. OO= o;(R + 1)3

where we have defined

(6)

(7)

(8)

(9)

Without loss of generality we shall assume that R, which is

negative, is smaller in magnitude than unity so that

rIo z – 1. Accordingly, we find that the operator (3) maybe

written

[
r=rlo l–

4QR a
COO(Ri- 1)Zrm al

-. ,. ,.

3 - S2
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Fig. 2. Equivalent circuit of the reflection amplifier.

where the coefficient of i3/i%is negative and that of 82/i%2is
positive. Equation (2), in conjunction with (10), indicates

that an incident “wave” ,sI(t) is transformed into s2(t) 1) by

delay

tiT=
4QR

COO(Ri- 1)zr~o

2) with a spreading by the diffusion operator 82/& multi-

plied by a positive coefficient, and 3 ) a multiplication by rIo

which causes gain and sign reversal, as behooves reflection

of a voltage from a normalized impedance of magnitude less

than unity.

Thus far we have defined the action of the circuit to the

right of the reference plane J. Let s(t) be normalized such

that s(t)*s(t) is the power. Referring to Fig. 2, we may define

the “gain” GI so that

Sl(t) = @so(t). (11)

S2(t) is related to SI (t)by (2) where r is an operator. Finally,

s3(t) = @s’(t). (12)

Combining, we obtain

[

4QR a

S3(t) = GzrIo 1 –
~o r~o(~ + 1)2 at

8Q’R’ I<so(t).(13)
+ 0:(– rIo)(R + I)’ at

Inside the brackets, the coefficient of d/i3t is negative, that of

a=jatzis positive.

III. THE SCHOTTKY BARRIER DIODE

AS A FAST ABSORBER

The Schottky barrier diode, a majority carrier device, is

used as the nonlinear element because it is very fast. We
believe that for this application p-i-n diodes are too slow. It

is possible to operate the diode in either a reverse-biased

varactor mode or in a forward-biased resistive mode. The

latter was chosen because it permits loss modulation in a

straightforward manner. At large forward biases the resis-

tance of a Schottky diode becomes small and the capaci-
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Fig. 3. Equivalent circuit of the Schottky diode termination and the
feedback circuit.

tance becomes large. In this analysis we shall assume that the

capacitance remains constant and ignore varactor and series

resistance effects.

Fig. 3(a) shows a simple microwave model of the diode. Cj

represents the junction and package capacitances. From

Saleh [3], we have

where 11(x) is a modified Bessel function of the first kind,

Id. = 10exp (aVdC)

where

u= q/kT (15)

and the dc supply to the diode approximates a voltage

source. The time derivatives of U,which would arise from an

envelope expansion of the capacitive susceptance, are ne-

glected in comparison with those caused by the reactive

contribution of the cavity surrounding the IMPATT. Ex-

panding equation (14), we get

( C/[u \%
i = 21& ;+—

16 ‘“ )
““ +jUOcjv. (16)

For reasons that soon will become obvious, we invert this

series. Let

u= A1i+A3\i12i. (17)

Solving, we obtain

.41 = (aldc +joocj)-’ = 2Y/ (18)

A3 = ‘~q2~3~’cl~12 (19)

and for the normalized impedance Z, of the Schottky diode

Z,= (~~ – 2/a3~’Cl vi ]2)/zo. (20)

It is desirable now to relate Z, to the reflection coefficient of

the Schottky barrier diode 17and also to put i(t) in terms of

s(t). For a transmission line,

2s(t) = fi~(c) + &i(t) = [Z. + I]&i(L). (21)

For a large forward bias, we have Z, < 1; therefore, the

current i is (approximately) proportional to the forward

wave s:

i~2N’~s. (22)
Furthermore,

r= - (1 - 2ZJ. (23)

From Fig. 1,

S5(t)= r(t~4(t) (24)

where r is obtained by combining (20)-(23).

r = – 1 + 4Yoq – (4 Yo)2q%31dcl rfs512. (25)

The physical interpretation of (25) is that a voltage pulse

incident upon the diode and transformed via (24) will

experience a linear loss 4 Y. q that is reduced by

(4 Yo)2q2a31dC Iqs, 1’ when the signal increases and then

experiences a reversal because the termination has a nor-

malized impedance of-magnitude smaller than unity. The

reduction of loss at high signal levels is required for mode

locking, in order to compensate for the “diffusion in time”

caused by the bandwidth-fimited gain.

If the system is to be self-starting, a slow relaxation time

constant must be associated with one of the elements in the

system. This time constant may be associated with the

IMPATT diode or the Schottky diode, or can be introduced

by a separate component such as a p-i-n diode or ferrite

fimiter. In the present case the slow time constant was

incorporated into the Schottky diode bias drive by detecting

the power in the transmission line with the use of a

directional coupler-detector scheme in conjunction with the

voltage driver illustrated in Fig. 3(b).

The remaining element in this system is a waveguide delay

line. An X-band standard rectangular waveguide was used

in the fundamental mode. We have (see Fig. 1)

() T~
s~(t) = &Ls5 r – ~

and

()

T~
s4(r)=JF@3 t–y

(26)

(27)

where s~(t) is the wave incident upon reference plane I after

one transit. The dispersion associated with the waveguide is

ignored.

IV. THE MODE-LOCKING EQUATION AND ITS SOLUTION

The closure condition necessitates that after one transit,

SO(C), i.e., si(t), be a reproduction of so(t), except for a

possible time delay different from T~and a possible phase-

shift factor ejv indicating that the carrier exp .@o thas been

changed in phase. Thus, dropping the subscript O on s,

I ( )–4QR a
s(r – time delay)ej” & G 1 +

I (UO(R+ lyr,o Tt

(
– 8Q2R~

)

;2

i- + (–4q Yo)
[o:(R + 1)3r,o =
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Here we have defined G = G, GL(– r,~). G is the total linear Note that the term in brackets is positive; therefore,

nondispersive part of the gain. Since r,. < – 1, G is >0. Re fi <0 according to (29). A solution of (32) is [4]

The term on the right-hand side of (28) multiplying s(t)

represents the action on the pulse by the linear loss, the s(t) = “0
(

exp j ~ [‘ tanh (t/?p)dt
)

(35)

nondispersive part of the gain, and the Schottky diode in cosh (t/Tp) .

its linear regime (i.e., the Is 12 contribution is negligible). where

If mode-locked pulses separated by long time intervals

are to exist, no gain should be experienced by a (noise) ~(2-a2-3ja)=fi (36)
perturbation in that interval, otherwise the pulse solution (vo~p)

would be unstable. Therefore, we require and

l–G+4Re(~)YoG>0. (29) 1
~(a2-l+2ja)=~ (37)

Since there is no net gain in the time interval between pulses
T;

when the Schottky diode is unsaturable, the system would which reduces to Haus’ solution [2] when a = O. The

not be self-starting if there were no possibility of the constraint Re ~ <0 forces the “chirp” parameter a to be less

Schottky diode redueing its loss in the complete absence ofa than unity in magnitude.

signal. This loss reduction in the absence of a signal is

accomplished by the feedback circuit shown in Fig. 1 which
a<l. (38)

has a time constant slow compared with the pulse round-trip separating q into real and imaginary parts yields

time.

The function s(t - time delay)&’ may be expanded to first q=qr+hi (39)

order on the delay time deviation from ~R, d T, and phase and solving (36) and (37) for the pulsewidth gives

angle ~, so that
~=2@

(

2(1 – a2)

)

1/2
i3s(t- TR)

~(t - TR– 6T)& ~S(t– ~R)– d~ ~t
P

. (40)
@IJ (R + 1)3(–r10)(l – G +4?f, yoG)

~30) The pulse amplitude is

QR

( )

1/2
When (30) is introduced in (28), and steady-state pulse

3a
. (41)

‘0 = 2Yo COo7PUlq I aldcqrqi
solutions are sought, no first-order time derivatives can

(R+ l)3r,o

appear in the equation because it can be shown that ~ Note that according to (18), qi < () and hence qi r,. >0, so

isolated pulse solution is impossible in this case. ThiS that real solutions result, provided a >0. Thus, combining

requirement determines the delay time d T. There remains with (38),
the equation

O<a<l. (42)

(?2s o:(R + 1)3(–r,o)
s+ 8Q2R2

(G-1 -4qYoG-jlj)s The FM deviation of the pulse is a/zp where the “chirp

parameter” a maybe related to q using (36) and (34):

+ ~;(R + 1)3(-r,o)
2Q2R’

(2Yo?fa)%Id.lqs I’s = o. (31)

In this equation $, the phase change after one transit, is an

ad@stable parameter. Hence, in solving (31) we must look

for pulselike solutions, under the constraint (29), with ~

adjustable, and take into account that the coefficient of Is 12s

is positive. This equation is slightly different from the

standard mode-locking equation solved previously [2] be-

cause q is complex. It takes the form

Introducing (42) we find the condition

C&c>fi%oocj
3“

(44)

:S+,4S+B[S12S=0 (32)

where ~ and A are complex.

[

~ =! –cof(R + 1)3(–r,o)
4 2Q2R2 1(G- 1 -4qYo G-j~) (33)

[

j= c03(R + I)s(–rlo) 1
where

2Q2R2
(2 Yoqz)2aIdcl q j~. (34)

P,= (/s412). (46)

Fig. 4 shows plots of P, (average pulse power) and tP

versus I~C. There is another relationship between Idcand Pp
which is governed by the detector-voltage driver part of the

circuit. By plotting these relationships on the same graph

and looking for the intersections, points where the solutions

are consistent can be determined. The intersections deter-

mine the system steady-state operating points.

An empirical formula for I~c in terms of the average

microwave power in the circuit is

Id. = 1,=0(1 – kP,) (45)
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and the solutions in the laser case. This may be attributable
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10
effects were included in both amplifier and absorber.

~ rp [ns) VI. SELF-STARm~G CRITERION

I We have mentioned that the stability of isolated mode-

locked tmlses reauires that the net gain between pulses be

I I . J5 10

3

I

21
Pp (mW)

1

‘1

t

i---

mode locking is realizable), then the “stable” intersection

3rp=TR

fj

. . . . . . . . . . . . . .

negative. If the net gain cannot adjust between the value

required from the mode-locking solution and the small-

signal value (in the absence of a signal), then the system

cannot be self-starting. We shall now investigate the condi-

tions for self-starting.

The concept of a self-starting mode-locked system in-

volves two steps. First, a single mode of some number of half

wavelengths within the waveguide resonator grows, result-

ing in a CW signal. The requirement for this is

G-l>4qr YoG. (47)

//j/

!5 After the system is CW operating [s(t) = constant indepen-

dent of time], s(t) may “buckle” into a pulse waveform, Such

instability in CW operation is necessary if the system is to be

self-starting.

10 We examine the stabilit y of a small perturbation a(T)ejO(n

I

rp(ns)
which travels through the system at some submultiple of the

round-trip time T~ [5]. That is,

I oc[mA)

(b)

Fig. 4. Power P, and pulsewidth T, versus dc bias current I.C.
(a) G = 1.08, load line drawn to correspond to values in Table 1.
(b) G = 1.04.

In the experimental system, k is adjustable from 10-2 to

104, while T~ is somewhere between 1.5 x 10-7 and

3 x 10-s s. Fig. 4(a) indicates how a typical function from

(43) intersects a computer-generated solution. Of the three

intersections, only the one on the right is assumed physical.

The argument that is used is that the intersection on the right

and the one in the center seem to be in one-to-one corre-

spondence with the laser model [2]. To relate the graphs in

Fig. 4 with those of Haus [2], we may imagine a plot of P,
against I~co where I~co is an externally adjustable

parameter. In the laser case, the intersection whose power

increases with decreasing gain (bias) has been shown to be

unstable. It is clear that raising the bias JJCOwill lead first to

an intersection on the “stable” branch of the PP(I~C) curve.

This intersection may not correspond to a physical solution

because the system may be CW operating. But if the CW

operation becomes unstable at some value of Id. (as it must if

().z~mt
s = so + 6s = so + a(T)#’(n exp J—

T~
(48)

where so is real. The power is

P= Po+dP+aP*=\sp

‘s’+a’T~o{e’o(nexp(’+ccl’49)
When the system is operating CW, from (31), we have

(G-1 -47’0 YoG-j*)

+ (4 YOUOX)’21:C[ q, 12P,= o. (50)

Since

Cildc * OJOcj (51)

at the biases where (47) is satisfied, by using (18) we may

approximate (50):

G–l–%
P,

+ Y;—= o. (52)
1(1:=)3

This is the gain in one transit time which is zero in the steady

state. To find the growth rate of a perturbation. we ask for

the gain perturbation, we must write Id, in terms of 6s.

Obviously ~~=is not. any more. a direct current but has time

dependence. Instead of (45). we write

[

L’(5P
Id= = ldco 6((9) –

1 + juT~ i
(53)
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Irwhere TA is the time constant of the detector and vokage-

driver circuit and

TA + TR. (54)

This is equivalent to saying that the biasing loop averages

over many pulses. Examining only positive frequencies, we

write

dIdc z – kIdcoso
~(~)ej~(~

21tmTA‘
(55)

1 +.j~

Strictly speaking, we would have to treat o in (53) as a

variable, including the growth rate of the perturbation. But

this growth rate, in general, will be small compared with

2mn(T~ /TR) and hence can be ignored. If the perturbation is

included, (52) becomes

*l(2G-*1’’dc+a’pl=s”T’~’s(”)Ci(l’c)

For the system to be self-starting we would like a(T) to grow.

Expressing 6P and d~’c in terms of a(T), by using (49) and

(55), we find

[( 3 Y“ P“

)(

kIdco T;

l’CO(l – kPo)2
– 2G

T; + (2rnTA)2)

Y“

+ ~’cf_)(l– .kPo)1
>0, (57)

Using typical numbers from Table I in (52) and (57), we

obtain

T./TR > 4/60. (58)

IJnless k is very large, this provides a very mild limitation on

TA because we have assumed TA/TR % 1.

VII. RELAXATION OSCILLATIONS

The analysis of relaxation oscillations is similar to that for

self-starting. However, in this case we cannot assume that

the frequency of the relaxation oscillation is near 2zm/TR.
Equation (56) still holds, but now we have to take (53) with

jco not preset. We obtain

{%[(-”2G)k’’c”+*’’oT”)l)l

1– joTR(l + jcoTA) 6P(o) =0. (59)

For stability we would like roots of m in the lower half co

plane.

[

(j~)z + -..!.- -

1

2Y;P~ ,

TA ctTRI:co(l – kPo )3 ‘o

[

–2Y” P”

{

3YoPok
+ – 2GkIdco

TATR@Co(l – kPo)2 l’C”(l – kPo)2

Y“

+ Z’c”(l – ‘Po) }1
=0, (60)

Irl 0,7 -

0.4 ~ ( I I
10 II

FREQUENCY (GHz)

Fig, 5. Calculated reflection coefficient of Schottky diode and embed-
ding circuit versus bias current.

TABLE I

——
Y.

P
0

‘DCO

u

kPo

‘R

R

b!.

c.
]

Q

, 01 mho

0.5 mw

10 mA

40 V-l

.5

50 ns

- 1/3

2T x 10’0

1 pF

40

The system will be stable when

3YoPok
- – 2Gk1dco + —–--&—-

Zdco(l – kPo)2 1’,,”(1 – kF’o)
<0 (61)

and

>> 2Y; P0—.
TA C&o(l – kF’())3‘

(62)

With the values listed in Table I used, the second expression

means, that for a

stable

microwave mode-locked

TA < 50TR ~ 2.5 ,US.

VIIL EXPERIMENT

system to be

(63)

The IMPATT diode amplifier was designed and built by

Weng C. Chew and is described in his thesis [6]. It had a

150-300-MHz useful bandwidth, depending on the bias. The

microstrip circuit for the Schottky barrier diode was fab-

ricated on a 30-mil TFE substrate. A plot of the calculated

magnitude of the reflection coefficient [’7] as a function of

bias is shown in Fig. 5. The circuit was designed to tune out

the susceptance produced by Cj.

A great deal of flexibility was built into the experimental

system. The four parameters that could be adjusted were
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(a) (a)

(b)

Fig. 6. Observed pulse shapes. (a) Long system with 1 pulse per round-

trip time (10 ns/div). (b) Long system with 2 pulses per round-trip time

(10 ns/div).

(b)

Fig. 7. (a) Short system at 5 ns/div. The distortion caused by limitations
in the detector bandwidth. (b) Log amplitude of the spectrum of the

pulse shown in 6(a). Horizontal: 20 MHz/div; vertical: 10 dB/div.

l~.o, k, and the bias on the IMPATT that affects both G and

the parameters in (13). Typical values of the rest of the

parameters are listed in Table I.

The first system that was built had TK ~ 50ns. It operated

either with one or two pulses per round-trip time (see Fig. 6).

The pulse lengths were between 5 and 15 ns. The system

mode locked over an 8-dB variation in GL. The locking

range for z& was in agreement with theoretical prediction.

The waveguide was shortened so that TK = 25 ns. Only

one pulse per round trip was observed with this system.

Pulse lengths as short as 4 ns were achieved. The average

pulse power was between 1 and 10 mW. For some biases

there were in the system as much as 10-dB extra gain that
had to be reduced by an attenuator. The system seemed rela-

tively insensitive to the k of (45).

Fig. 6(a) is a time-domain picture of the pulse shown in

Fig. 7(b). Fig. 7(b) is a photograph of the pulse spectrum
over a 70-dB range. Notice the linear falloff of the tails,

which supports the sech (t/zp)dependence near the pulse

center. The Fourier transform of

s(t)= sech (t/~p) (64)

is
S(O) = n sech (7r~Pco/2). (65)

Taking the log of S(co) near one of the tails, we have

20 log,, S(f)= 20 logl, n – 20(nY~P) log10 e. (66)

From Fig. 7(b) we can obtain a ~P = 6.8 ns pulsewidth that
agrees with the oscilloscope display in Fig. 6(a).

Forced mode locking [8] was also attempted with the

short system and was successful. The forcing signal was
applied to the Schottky barrier diode. Various combinations

of forced and passive mode locking were also tried. A

locking phenomenon similar to that seen in injection lock-

ing was observed in that, over a certain range of modulation

frequencies, the pulse repetition period could be controlled
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(b)

Fig. 8. (a) Relaxation oscillations in the short system (0.2 ps/div). (b)
Same as (a), except 20 ns/div.

by the applied modulation frequency. No difference was

found in pulse length.
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By adjusting the time constant T~, relaxation oscillations

could be obtained or suppressed for either the passive or the

passive combined with forced mode-locking cases (see Fig.

8). Relaxation oscillations could also be obtained in the

absence of mode locking.

IX. DISCUSSION

The present experiments are preliminary in that they open

up several avenues for further investigation.

1) The mode locking principle applied to high-power

devices at S or X band may give puke powers and pulse-

widths of interest for radar applications. With such an

application in mind, power maximization is a topic for

further investigation.

2) Scaling of the system to higher frequencies can give

very much shorter pulses because the pulsewidth is pri-

marily determined by the net system bandwidth. At milli-

meter wavelengths, a fully integrated mode-locking system

offers an attractive method for short pulse generation.

3) The parameters of the microwave system may be

adjusted and measured more conveniently than those of an

optical mode-locking system. The pulsewidth and shape

measurements are also performed more conveniently at

microwave frequencies than at optical. frequencies. Experi-

mental studies of the microwave system may provide

guidance for the design of optical systems.
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